Electric Vehicle Battery Makers Test a Future Without Lithium
A year and a half ago, China’s CATL put on a flashy event to make an announcement significant enough that Zeng Yuqun, the founder and chairman of the world’s biggest battery maker, served as emcee.Get more news about Lithium Battery Pack,you can vist our website!
Zeng, who had just passed up Alibaba’s Jack Ma in the Bloomberg Billionaires Index, revealed that CATL was working on battery packs that would use lithium-ion and sodium-ion cells. While sodium is more abundant and offers potential safety benefits over lithium, the latter is dominant in EV batteries. Lithium-ion chemistries offer superior energy density, enabling drivers to travel further between charges.
Every year the world runs more and more on batteries. Electric vehicles passed 10% of global vehicle sales in 2022, and they’re on track to reach 30% by the end of this decade.
Policies around the world are only going to accelerate this growth: recent climate legislation in the US is pumping billions into battery manufacturing and incentives for EV purchases. The European Union, and several states in the US, passed bans on gas-powered vehicles starting in 2035.
The transition will require lots of batteries—and better and cheaper ones.
Most EVs today are powered by lithium-ion batteries, a decades-old technology that’s also used in laptops and cell phones. All those years of development have helped push prices down and improve performance, so today’s EVs are approaching the price of gas-powered cars and can go for hundreds of miles between charges. Lithium-ion batteries are also finding new applications, including electricity storage on the grid that can help balance out intermittent renewable power sources like wind and solar.
But there is still lots of room for improvement. Academic labs and companies alike are hunting for ways to improve the technology—boosting capacity, speeding charging time, and cutting costs. The goal is even cheaper batteries that will provide cheap storage for the grid and allow EVs to travel far greater distances on a charge.
At the same time, concerns about supplies of key battery materials like cobalt and lithium are pushing a search for alternatives to the standard lithium-ion chemistry.
In the midst of the soaring demand for EVs and renewable power and an explosion in battery development, one thing is certain: batteries will play a key role in the transition to renewable energy. Here’s what to expect in 2023.
The Wall